Add support for copying files and folders.

This commit is contained in:
2021-12-19 14:31:57 +01:00
parent 161cb79b88
commit 311339685c
450 changed files with 232338 additions and 3 deletions

385
vendor/github.com/evanw/esbuild/internal/graph/graph.go generated vendored Normal file
View File

@ -0,0 +1,385 @@
package graph
// This graph represents the set of files that the linker operates on. Each
// linker has a separate one of these graphs (there is one linker when code
// splitting is on, but one linker per entry point when code splitting is off).
//
// The input data to the linker constructor must be considered immutable because
// it's shared between linker invocations and is also stored in the cache for
// incremental builds.
//
// The linker constructor makes a shallow clone of the input data and is careful
// to pre-clone ahead of time the AST fields that it may modify. The Go language
// doesn't have any type system features for immutability so this has to be
// manually enforced. Please be careful.
import (
"sort"
"sync"
"github.com/evanw/esbuild/internal/ast"
"github.com/evanw/esbuild/internal/helpers"
"github.com/evanw/esbuild/internal/js_ast"
"github.com/evanw/esbuild/internal/logger"
"github.com/evanw/esbuild/internal/runtime"
)
type entryPointKind uint8
const (
entryPointNone entryPointKind = iota
entryPointUserSpecified
entryPointDynamicImport
)
type LinkerFile struct {
InputFile InputFile
// This holds all entry points that can reach this file. It will be used to
// assign the parts in this file to a chunk.
EntryBits helpers.BitSet
// This is lazily-allocated because it's only needed if there are warnings
// logged, which should be relatively rare.
lazyLineColumnTracker *logger.LineColumnTracker
// The minimum number of links in the module graph to get from an entry point
// to this file
DistanceFromEntryPoint uint32
// If "entryPointKind" is not "entryPointNone", this is the index of the
// corresponding entry point chunk.
EntryPointChunkIndex uint32
// This file is an entry point if and only if this is not "entryPointNone".
// Note that dynamically-imported files are allowed to also be specified by
// the user as top-level entry points, so some dynamically-imported files
// may be "entryPointUserSpecified" instead of "entryPointDynamicImport".
entryPointKind entryPointKind
// This is true if this file has been marked as live by the tree shaking
// algorithm.
IsLive bool
}
func (f *LinkerFile) IsEntryPoint() bool {
return f.entryPointKind != entryPointNone
}
func (f *LinkerFile) IsUserSpecifiedEntryPoint() bool {
return f.entryPointKind == entryPointUserSpecified
}
// Note: This is not guarded by a mutex. Make sure this isn't called from a
// parallel part of the code.
func (f *LinkerFile) LineColumnTracker() *logger.LineColumnTracker {
if f.lazyLineColumnTracker == nil {
tracker := logger.MakeLineColumnTracker(&f.InputFile.Source)
f.lazyLineColumnTracker = &tracker
}
return f.lazyLineColumnTracker
}
type EntryPoint struct {
// This may be an absolute path or a relative path. If absolute, it will
// eventually be turned into a relative path by computing the path relative
// to the "outbase" directory. Then this relative path will be joined onto
// the "outdir" directory to form the final output path for this entry point.
OutputPath string
// This is the source index of the entry point. This file must have a valid
// entry point kind (i.e. not "none").
SourceIndex uint32
// Manually specified output paths are ignored when computing the default
// "outbase" directory, which is computed as the lowest common ancestor of
// all automatically generated output paths.
OutputPathWasAutoGenerated bool
}
type LinkerGraph struct {
Files []LinkerFile
entryPoints []EntryPoint
Symbols js_ast.SymbolMap
// We should avoid traversing all files in the bundle, because the linker
// should be able to run a linking operation on a large bundle where only
// a few files are needed (e.g. an incremental compilation scenario). This
// holds all files that could possibly be reached through the entry points.
// If you need to iterate over all files in the linking operation, iterate
// over this array. This array is also sorted in a deterministic ordering
// to help ensure deterministic builds (source indices are random).
ReachableFiles []uint32
// This maps from unstable source index to stable reachable file index. This
// is useful as a deterministic key for sorting if you need to sort something
// containing a source index (such as "js_ast.Ref" symbol references).
StableSourceIndices []uint32
}
func CloneLinkerGraph(
inputFiles []InputFile,
reachableFiles []uint32,
originalEntryPoints []EntryPoint,
codeSplitting bool,
) LinkerGraph {
entryPoints := append([]EntryPoint{}, originalEntryPoints...)
symbols := js_ast.NewSymbolMap(len(inputFiles))
files := make([]LinkerFile, len(inputFiles))
// Mark all entry points so we don't add them again for import() expressions
for _, entryPoint := range entryPoints {
files[entryPoint.SourceIndex].entryPointKind = entryPointUserSpecified
}
// Clone various things since we may mutate them later. Do this in parallel
// for a speedup (around ~2x faster for this function in the three.js
// benchmark on a 6-core laptop).
var dynamicImportEntryPoints []uint32
var dynamicImportEntryPointsMutex sync.Mutex
waitGroup := sync.WaitGroup{}
waitGroup.Add(len(reachableFiles))
stableSourceIndices := make([]uint32, len(inputFiles))
for stableIndex, sourceIndex := range reachableFiles {
// Create a way to convert source indices to a stable ordering
stableSourceIndices[sourceIndex] = uint32(stableIndex)
go func(sourceIndex uint32) {
file := &files[sourceIndex]
file.InputFile = inputFiles[sourceIndex]
switch repr := file.InputFile.Repr.(type) {
case *JSRepr:
// Clone the representation
{
clone := *repr
repr = &clone
file.InputFile.Repr = repr
}
// Clone the symbol map
fileSymbols := append([]js_ast.Symbol{}, repr.AST.Symbols...)
symbols.SymbolsForSource[sourceIndex] = fileSymbols
repr.AST.Symbols = nil
// Clone the parts
repr.AST.Parts = append([]js_ast.Part{}, repr.AST.Parts...)
for i := range repr.AST.Parts {
part := &repr.AST.Parts[i]
clone := make(map[js_ast.Ref]js_ast.SymbolUse, len(part.SymbolUses))
for ref, uses := range part.SymbolUses {
clone[ref] = uses
}
part.SymbolUses = clone
part.Dependencies = append([]js_ast.Dependency{}, part.Dependencies...)
}
// Clone the import records
repr.AST.ImportRecords = append([]ast.ImportRecord{}, repr.AST.ImportRecords...)
// Add dynamic imports as additional entry points if code splitting is active
if codeSplitting {
for importRecordIndex := range repr.AST.ImportRecords {
if record := &repr.AST.ImportRecords[importRecordIndex]; record.SourceIndex.IsValid() && record.Kind == ast.ImportDynamic {
dynamicImportEntryPointsMutex.Lock()
dynamicImportEntryPoints = append(dynamicImportEntryPoints, record.SourceIndex.GetIndex())
dynamicImportEntryPointsMutex.Unlock()
}
}
}
// Clone the import map
namedImports := make(map[js_ast.Ref]js_ast.NamedImport, len(repr.AST.NamedImports))
for k, v := range repr.AST.NamedImports {
namedImports[k] = v
}
repr.AST.NamedImports = namedImports
// Clone the export map
resolvedExports := make(map[string]ExportData)
for alias, name := range repr.AST.NamedExports {
resolvedExports[alias] = ExportData{
Ref: name.Ref,
SourceIndex: sourceIndex,
NameLoc: name.AliasLoc,
}
}
// Clone the top-level scope so we can generate more variables
{
new := &js_ast.Scope{}
*new = *repr.AST.ModuleScope
new.Generated = append([]js_ast.Ref{}, new.Generated...)
repr.AST.ModuleScope = new
}
// Also associate some default metadata with the file
repr.Meta.ResolvedExports = resolvedExports
repr.Meta.IsProbablyTypeScriptType = make(map[js_ast.Ref]bool)
repr.Meta.ImportsToBind = make(map[js_ast.Ref]ImportData)
case *CSSRepr:
// Clone the representation
{
clone := *repr
repr = &clone
file.InputFile.Repr = repr
}
// Clone the import records
repr.AST.ImportRecords = append([]ast.ImportRecord{}, repr.AST.ImportRecords...)
}
// All files start off as far as possible from an entry point
file.DistanceFromEntryPoint = ^uint32(0)
waitGroup.Done()
}(sourceIndex)
}
waitGroup.Wait()
// Process dynamic entry points after merging control flow again
stableEntryPoints := make([]int, 0, len(dynamicImportEntryPoints))
for _, sourceIndex := range dynamicImportEntryPoints {
if otherFile := &files[sourceIndex]; otherFile.entryPointKind == entryPointNone {
stableEntryPoints = append(stableEntryPoints, int(stableSourceIndices[sourceIndex]))
otherFile.entryPointKind = entryPointDynamicImport
}
}
// Make sure to add dynamic entry points in a deterministic order
sort.Ints(stableEntryPoints)
for _, stableIndex := range stableEntryPoints {
entryPoints = append(entryPoints, EntryPoint{SourceIndex: reachableFiles[stableIndex]})
}
// Allocate the entry bit set now that the number of entry points is known
bitCount := uint(len(entryPoints))
for _, sourceIndex := range reachableFiles {
files[sourceIndex].EntryBits = helpers.NewBitSet(bitCount)
}
return LinkerGraph{
Symbols: symbols,
entryPoints: entryPoints,
Files: files,
ReachableFiles: reachableFiles,
StableSourceIndices: stableSourceIndices,
}
}
// Prevent packages that depend on us from adding or removing entry points
func (g *LinkerGraph) EntryPoints() []EntryPoint {
return g.entryPoints
}
func (g *LinkerGraph) AddPartToFile(sourceIndex uint32, part js_ast.Part) uint32 {
// Invariant: this map is never null
if part.SymbolUses == nil {
part.SymbolUses = make(map[js_ast.Ref]js_ast.SymbolUse)
}
repr := g.Files[sourceIndex].InputFile.Repr.(*JSRepr)
partIndex := uint32(len(repr.AST.Parts))
repr.AST.Parts = append(repr.AST.Parts, part)
// Invariant: the parts for all top-level symbols can be found in the file-level map
for _, declaredSymbol := range part.DeclaredSymbols {
if declaredSymbol.IsTopLevel {
// Check for an existing overlay
partIndices, ok := repr.Meta.TopLevelSymbolToPartsOverlay[declaredSymbol.Ref]
// If missing, initialize using the original values from the parser
if !ok {
partIndices = append(partIndices, repr.AST.TopLevelSymbolToPartsFromParser[declaredSymbol.Ref]...)
}
// Add this part to the overlay
partIndices = append(partIndices, partIndex)
if repr.Meta.TopLevelSymbolToPartsOverlay == nil {
repr.Meta.TopLevelSymbolToPartsOverlay = make(map[js_ast.Ref][]uint32)
}
repr.Meta.TopLevelSymbolToPartsOverlay[declaredSymbol.Ref] = partIndices
}
}
return partIndex
}
func (g *LinkerGraph) GenerateNewSymbol(sourceIndex uint32, kind js_ast.SymbolKind, originalName string) js_ast.Ref {
sourceSymbols := &g.Symbols.SymbolsForSource[sourceIndex]
ref := js_ast.Ref{
SourceIndex: sourceIndex,
InnerIndex: uint32(len(*sourceSymbols)),
}
*sourceSymbols = append(*sourceSymbols, js_ast.Symbol{
Kind: kind,
OriginalName: originalName,
Link: js_ast.InvalidRef,
})
generated := &g.Files[sourceIndex].InputFile.Repr.(*JSRepr).AST.ModuleScope.Generated
*generated = append(*generated, ref)
return ref
}
func (g *LinkerGraph) GenerateSymbolImportAndUse(
sourceIndex uint32,
partIndex uint32,
ref js_ast.Ref,
useCount uint32,
sourceIndexToImportFrom uint32,
) {
if useCount == 0 {
return
}
repr := g.Files[sourceIndex].InputFile.Repr.(*JSRepr)
part := &repr.AST.Parts[partIndex]
// Mark this symbol as used by this part
use := part.SymbolUses[ref]
use.CountEstimate += useCount
part.SymbolUses[ref] = use
// Uphold invariants about the CommonJS "exports" and "module" symbols
if ref == repr.AST.ExportsRef {
repr.AST.UsesExportsRef = true
}
if ref == repr.AST.ModuleRef {
repr.AST.UsesModuleRef = true
}
// Track that this specific symbol was imported
if sourceIndexToImportFrom != sourceIndex {
repr.Meta.ImportsToBind[ref] = ImportData{
SourceIndex: sourceIndexToImportFrom,
Ref: ref,
}
}
// Pull in all parts that declare this symbol
targetRepr := g.Files[sourceIndexToImportFrom].InputFile.Repr.(*JSRepr)
for _, partIndex := range targetRepr.TopLevelSymbolToParts(ref) {
part.Dependencies = append(part.Dependencies, js_ast.Dependency{
SourceIndex: sourceIndexToImportFrom,
PartIndex: partIndex,
})
}
}
func (g *LinkerGraph) GenerateRuntimeSymbolImportAndUse(
sourceIndex uint32,
partIndex uint32,
name string,
useCount uint32,
) {
if useCount == 0 {
return
}
runtimeRepr := g.Files[runtime.SourceIndex].InputFile.Repr.(*JSRepr)
ref := runtimeRepr.AST.NamedExports[name].Ref
g.GenerateSymbolImportAndUse(sourceIndex, partIndex, ref, useCount, runtime.SourceIndex)
}

117
vendor/github.com/evanw/esbuild/internal/graph/input.go generated vendored Normal file
View File

@ -0,0 +1,117 @@
package graph
// The code in this file mainly represents data that passes from the scan phase
// to the compile phase of the bundler. There is currently one exception: the
// "meta" member of the JavaScript file representation. That could have been
// stored separately but is stored together for convenience and to avoid an
// extra level of indirection. Instead it's kept in a separate type to keep
// things organized.
import (
"github.com/evanw/esbuild/internal/ast"
"github.com/evanw/esbuild/internal/config"
"github.com/evanw/esbuild/internal/css_ast"
"github.com/evanw/esbuild/internal/js_ast"
"github.com/evanw/esbuild/internal/logger"
"github.com/evanw/esbuild/internal/resolver"
"github.com/evanw/esbuild/internal/sourcemap"
)
type InputFile struct {
Source logger.Source
Repr InputFileRepr
InputSourceMap *sourcemap.SourceMap
// If this file ends up being used in the bundle, these are additional files
// that must be written to the output directory. It's used by the "file"
// loader.
AdditionalFiles []OutputFile
UniqueKeyForFileLoader string
SideEffects SideEffects
Loader config.Loader
}
type OutputFile struct {
AbsPath string
Contents []byte
// If "AbsMetadataFile" is present, this will be filled out with information
// about this file in JSON format. This is a partial JSON file that will be
// fully assembled later.
JSONMetadataChunk string
IsExecutable bool
}
type SideEffects struct {
// This is optional additional information for use in error messages
Data *resolver.SideEffectsData
Kind SideEffectsKind
}
type SideEffectsKind uint8
const (
// The default value conservatively considers all files to have side effects.
HasSideEffects SideEffectsKind = iota
// This file was listed as not having side effects by a "package.json"
// file in one of our containing directories with a "sideEffects" field.
NoSideEffects_PackageJSON
// This file is considered to have no side effects because the AST was empty
// after parsing finished. This should be the case for ".d.ts" files.
NoSideEffects_EmptyAST
// This file was loaded using a data-oriented loader (e.g. "text") that is
// known to not have side effects.
NoSideEffects_PureData
// Same as above but it came from a plugin. We don't want to warn about
// unused imports to these files since running the plugin is a side effect.
// Removing the import would not call the plugin which is observable.
NoSideEffects_PureData_FromPlugin
)
type InputFileRepr interface {
ImportRecords() *[]ast.ImportRecord
}
type JSRepr struct {
AST js_ast.AST
Meta JSReprMeta
// If present, this is the CSS file that this JavaScript stub corresponds to.
// A JavaScript stub is automatically generated for a CSS file when it's
// imported from a JavaScript file.
CSSSourceIndex ast.Index32
}
func (repr *JSRepr) ImportRecords() *[]ast.ImportRecord {
return &repr.AST.ImportRecords
}
func (repr *JSRepr) TopLevelSymbolToParts(ref js_ast.Ref) []uint32 {
// Overlay the mutable map from the linker
if parts, ok := repr.Meta.TopLevelSymbolToPartsOverlay[ref]; ok {
return parts
}
// Fall back to the immutable map from the parser
return repr.AST.TopLevelSymbolToPartsFromParser[ref]
}
type CSSRepr struct {
AST css_ast.AST
// If present, this is the JavaScript stub corresponding to this CSS file.
// A JavaScript stub is automatically generated for a CSS file when it's
// imported from a JavaScript file.
JSSourceIndex ast.Index32
}
func (repr *CSSRepr) ImportRecords() *[]ast.ImportRecord {
return &repr.AST.ImportRecords
}

203
vendor/github.com/evanw/esbuild/internal/graph/meta.go generated vendored Normal file
View File

@ -0,0 +1,203 @@
package graph
// The code in this file represents data that is required by the compile phase
// of the bundler but that is not required by the scan phase.
import (
"github.com/evanw/esbuild/internal/ast"
"github.com/evanw/esbuild/internal/js_ast"
"github.com/evanw/esbuild/internal/logger"
)
type WrapKind uint8
const (
WrapNone WrapKind = iota
// The module will be bundled CommonJS-style like this:
//
// // foo.ts
// let require_foo = __commonJS((exports, module) => {
// exports.foo = 123;
// });
//
// // bar.ts
// let foo = flag ? require_foo() : null;
//
WrapCJS
// The module will be bundled ESM-style like this:
//
// // foo.ts
// var foo, foo_exports = {};
// __export(foo_exports, {
// foo: () => foo
// });
// let init_foo = __esm(() => {
// foo = 123;
// });
//
// // bar.ts
// let foo = flag ? (init_foo(), __toCommonJS(foo_exports)) : null;
//
WrapESM
)
// This contains linker-specific metadata corresponding to a "file" struct
// from the initial scan phase of the bundler. It's separated out because it's
// conceptually only used for a single linking operation and because multiple
// linking operations may be happening in parallel with different metadata for
// the same file.
type JSReprMeta struct {
// This is only for TypeScript files. If an import symbol is in this map, it
// means the import couldn't be found and doesn't actually exist. This is not
// an error in TypeScript because the import is probably just a type.
//
// Normally we remove all unused imports for TypeScript files during parsing,
// which automatically removes type-only imports. But there are certain re-
// export situations where it's impossible to tell if an import is a type or
// not:
//
// import {typeOrNotTypeWhoKnows} from 'path';
// export {typeOrNotTypeWhoKnows};
//
// Really people should be using the TypeScript "isolatedModules" flag with
// bundlers like this one that compile TypeScript files independently without
// type checking. That causes the TypeScript type checker to emit the error
// "Re-exporting a type when the '--isolatedModules' flag is provided requires
// using 'export type'." But we try to be robust to such code anyway.
IsProbablyTypeScriptType map[js_ast.Ref]bool
// Imports are matched with exports in a separate pass from when the matched
// exports are actually bound to the imports. Here "binding" means adding non-
// local dependencies on the parts in the exporting file that declare the
// exported symbol to all parts in the importing file that use the imported
// symbol.
//
// This must be a separate pass because of the "probably TypeScript type"
// check above. We can't generate the part for the export namespace until
// we've matched imports with exports because the generated code must omit
// type-only imports in the export namespace code. And we can't bind exports
// to imports until the part for the export namespace is generated since that
// part needs to participate in the binding.
//
// This array holds the deferred imports to bind so the pass can be split
// into two separate passes.
ImportsToBind map[js_ast.Ref]ImportData
// This includes both named exports and re-exports.
//
// Named exports come from explicit export statements in the original file,
// and are copied from the "NamedExports" field in the AST.
//
// Re-exports come from other files and are the result of resolving export
// star statements (i.e. "export * from 'foo'").
ResolvedExports map[string]ExportData
ResolvedExportStar *ExportData
// Never iterate over "resolvedExports" directly. Instead, iterate over this
// array. Some exports in that map aren't meant to end up in generated code.
// This array excludes these exports and is also sorted, which avoids non-
// determinism due to random map iteration order.
SortedAndFilteredExportAliases []string
// If this is an entry point, this array holds a reference to one free
// temporary symbol for each entry in "sortedAndFilteredExportAliases".
// These may be needed to store copies of CommonJS re-exports in ESM.
CJSExportCopies []js_ast.Ref
// This is merged on top of the corresponding map from the parser in the AST.
// You should call "TopLevelSymbolToParts" to access this instead of accessing
// it directly.
TopLevelSymbolToPartsOverlay map[js_ast.Ref][]uint32
// The index of the automatically-generated part used to represent the
// CommonJS or ESM wrapper. This part is empty and is only useful for tree
// shaking and code splitting. The wrapper can't be inserted into the part
// because the wrapper contains other parts, which can't be represented by
// the current part system. Only wrapped files have one of these.
WrapperPartIndex ast.Index32
// The index of the automatically-generated part used to handle entry point
// specific stuff. If a certain part is needed by the entry point, it's added
// as a dependency of this part. This is important for parts that are marked
// as removable when unused and that are not used by anything else. Only
// entry point files have one of these.
EntryPointPartIndex ast.Index32
// This is true if this file is affected by top-level await, either by having
// a top-level await inside this file or by having an import/export statement
// that transitively imports such a file. It is forbidden to call "require()"
// on these files since they are evaluated asynchronously.
IsAsyncOrHasAsyncDependency bool
Wrap WrapKind
// If true, we need to insert "var exports = {};". This is the case for ESM
// files when the import namespace is captured via "import * as" and also
// when they are the target of a "require()" call.
NeedsExportsVariable bool
// If true, the "__export(exports, { ... })" call will be force-included even
// if there are no parts that reference "exports". Otherwise this call will
// be removed due to the tree shaking pass. This is used when for entry point
// files when code related to the current output format needs to reference
// the "exports" variable.
ForceIncludeExportsForEntryPoint bool
// This is set when we need to pull in the "__export" symbol in to the part
// at "nsExportPartIndex". This can't be done in "createExportsForFile"
// because of concurrent map hazards. Instead, it must be done later.
NeedsExportSymbolFromRuntime bool
// Wrapped files must also ensure that their dependencies are wrapped. This
// flag is used during the traversal that enforces this invariant, and is used
// to detect when the fixed point has been reached.
DidWrapDependencies bool
}
type ImportData struct {
// This is an array of intermediate statements that re-exported this symbol
// in a chain before getting to the final symbol. This can be done either with
// "export * from" or "export {} from". If this is done with "export * from"
// then this may not be the result of a single chain but may instead form
// a diamond shape if this same symbol was re-exported multiple times from
// different files.
ReExports []js_ast.Dependency
NameLoc logger.Loc // Optional, goes with sourceIndex, ignore if zero
Ref js_ast.Ref
SourceIndex uint32
}
type ExportData struct {
Ref js_ast.Ref
// Export star resolution happens first before import resolution. That means
// it cannot yet determine if duplicate names from export star resolution are
// ambiguous (point to different symbols) or not (point to the same symbol).
// This issue can happen in the following scenario:
//
// // entry.js
// export * from './a'
// export * from './b'
//
// // a.js
// export * from './c'
//
// // b.js
// export {x} from './c'
//
// // c.js
// export let x = 1, y = 2
//
// In this case "entry.js" should have two exports "x" and "y", neither of
// which are ambiguous. To handle this case, ambiguity resolution must be
// deferred until import resolution time. That is done using this array.
PotentiallyAmbiguousExportStarRefs []ImportData
// This is the file that the named export above came from. This will be
// different from the file that contains this object if this is a re-export.
NameLoc logger.Loc // Optional, goes with sourceIndex, ignore if zero
SourceIndex uint32
}